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Effect of @ quenching on magnetic field size
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It is commonly assumed that the effect of mean-field magnetohydrodynamics essentially stops acting
wherever the mean-field size reaches a certain value. We show that if the mean velocity is approximately
constant, the regions where the field reaches such a threshold tend to shrink in size or the field tends to become
constant there. The rate of this process is also estimated.
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I. INTRODUCTION fields (see e.g. Ref(3]). Although many researchers find it
convincing, let us just say that it is not rigoro%5]. It is

Under the magnetohydrodynamic approximation, theprobably safer to view Eq2) as a semiempirical formula,
magnetic fieldB in a plasma of velocity and resistivity ~ which has proved indeed very successful for modelization of
satisfies the induction equation many astrophysical phenomefsee e.g. Refl2] and refer-
ences therein Nothing but qualitative predictions should be
expected from it, however.

Although, as asserted, the regular procedure should be to
solve the MHD system, by considering the effect upon the
This equation, although linear iB, becomes useless for velocity of the Lorentz force, this is so costly that it is natural
computational purposes if the velocityis turbulent. How- to try to extend Eq(2) beyond its original range of weak
ever, the presence of large-scale features of the magnetiields. However, it is known that large fields will tend to
field has been observed even in this situation. Apparentipuppress turbulence and therefore batand g should de-
there is an inverse cascade from small to large scales for tteFease with field size. The precise dependence, being to some
field. While several modelizations seem to indicate that thigxtent a matter of convenience to meet experimental data, is
cascade proceeds in a classical way, transferring graduallyiore polemic. The standard one feris
magnetic energy to ever larger scalege e.g., Ref[1]),

9B
—o=TAB+V X (uxB). (1)

other authors rather think that there is direct production of f
large-scale fields from small-scale orf€3. This, however, a= > 3
will not affect our analysis. The correct procedure to study 1+kB

this phenomenon should be integration of the full magneto-

hydrodynamicsMHD) system. Unfortunately, this is com- for some bounded functiof and positive constari. For
putationally difficult and analytically almost impossible ex- axisymmetric systems, where E®) is most often applied,
cept in simple cases. Under certain hypotheses, however,is usually taken as a multiple of céswhered is the latitude
simpler model has been proposed involving only the largeeoordinate. There is some controversy on the size tithas
scale components of the magnetic field and the veldeiso  been arguefl6,7] thatk could be of the order of %, a large
denoted byB andu). They are supposed to satisfy the equa-amount because the resistivity of astrophysical plasmas is
tion usually very low. If so, the threshold beyond which the
term is insignificant, could occur quite soon.

Our purpose is to study the effect of this threshold upon
the magnetic field size. Since we will try to isolate the con-
tribution of «, we will take the mean velocity as constant, so
where 8 is a turbulent diffusivity andx is the factor repre- that it may be eliminated by a Galilean transformation. Also
senting the enhancement of the magnetic field by small-scal®r simplicity purposes we will take the resistivity as con-
turbulent velocity.« is a scalar only in the case of isotropic stant, ignoring the turbulent contribution, since any addi-
turbulence. As a matter of fact there should be some kind ofional resistivity will only tend to smooth the field, our re-
projection of the right-hand side term into some space ofults will remain valid(and even stronggrin the general
large-scale fields to make E(R) a closed equation. For pe- case. We will make no hypotheses upon the specific form of
riodic problems, this space may be identified with the set othe functiona, only we assume that beyond a certain value
functions whose Fourier modes do not exceed a certaiB, of the field, it is small enough to be safely ignored. Under
value; in other cases the relevant space is left rather loos¢hese conditions, we will prove that eventually the field will
The space generated by the first few eigenfunctions of thaot exceed,. Moreover, if some region originally exceeds
Laplacian with the right boundary conditions is a good can-this value, it will tend to form a plateau of constant field or
didate. the region itself shrinks in volume, and the sharper the origi-

There exists a classical derivation of Ef), the so-called nal field gradients are, the more rapid is this process. Let us
equation of mean-field magnetohydrodynamics, for smalhote that these results do not follow in any obvious way from

?:Vx[—(yﬂ-ﬁ)VXB—FuXB-ﬁ-aB]. 2
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Eq. (2): although the equation is dissipative far=0, there J
could exist regions in the plasma whde B, and therefore Of,—,[fn<l5(|32)0|VS - 77( L)¢"(BZ)|V|32|2
a is positive; these regions may vary in time, and their ef-
fects upon the whole domain must be dealt with.
These results could conceivably throw light upon the pre- +2¢'(B*)|VB|? dV)
viously mentioned controversy upon the sizekpsince for
largerk, the cutoffBg is smaller. In the case of early alpha
quenching, therefore, not only the magnetic energy will tend +zf ¢'(B%)aB-JdV. 6)
to be small in time, but the size of the field itself is uniformly e

bounded by a small constant for large times. Notice that since all the functions are large scale, the current
cannot be too large iB is not, so that the contribution of
II. THE MAIN ESTIMATES small regions of) to the last term of EqS) is equally small.
Thus, if By is the threshold beyond whiclais small enough
Let ¢:[0,2)—[022) be a positive, increasing and twice to be discounted ane’(B?) vanishes forB in [0,B,], the
differentiable function. Since we assume that the threshold qbst integra| may be considered as zero. For such functions
a depends only oB?, we will consider the functioms(B?). ¢,
By elementary operations,

J
— B?)dV=-— f "(B?)|VB?|?
T atﬁfﬁ( ) n( J(BYIVE?
—(#°B?)=2¢'(B%)B. —,
+2¢’(BZ)IVB|2dV>, (6)
A(¢eB?)=2¢'(B?)|VB|*+ ¢"(B*)|VB??
o2 which is the main bound. It tells us that, provided ¢’=0,
+24'(B%)B-AB. the integral of¢)(B?) decreases in time.

Every election ofg provides some insight on the behavior
Since we assume that the mean velocity is zero, the functiopf B at the subdomaiB>B,. We will consider only the
¢°Bz satisfies the equation f0||owing examp|es:

d $1(X)=B3,xe[0Bo];  $1(x)=x2x>By,
o1 (#°B%)=nA(¢°B?)— ¢ (B?)| VB2
¢2(X)2801XE[O!BO]; ¢1(X):X!X>BO'

_ 1(R2 2 (R2\R.
277¢'(B%)|VB|*+2¢(B9)B-[V X (aB)]. In fact the functiong, is not twice differentiable at the point
(4) By, but by approximating it with smooth functions we will
see that the integrals converge to appropriate limits. Now the
Let us integrate all the terms in the dom&nunder consid- inequality (6) becomes forp,;
eration, which we assume smooth enough. Obviously
— B4—Bg‘st—77U 2|VB?2+2B?|VB|2dV
3(¢oB?) dtJe>g, B>Bg
f A(¢o|32)dv:f ——do.
Q s dn 5
s—47;50f |VB|2dV. @
B>By

This boundary integral vanishes with periodic, Dirichlet, or

Neumann homogeneous conditions, or in the absence dience the integral oB4—Bg decreases and is positive.
boundary. More generally, it is negative as long &2  Therefore it must tend to a constant and its time derivative to
decreases towards the boundary(f Thus, for instance, zero. For this to happerf,B>BO|VB|2dV must tend to zero.
since¢'=0, if 9B%an=<0, the integral is negative. This of- This seems to indicate th& must tend to a constant &

ten happens in real situations: one chooses the domain SO since the value oB at the boundary of this region is
Fhat_ the magnetic field is concentrated _there and it decre_asgsO’ this constant value has siBg. Actually this argument, if

in size towardsi). From now on we will assume that this made in a more general case, would need some fine points of

integral is not positive. functional analysis, but since we are working within a finite-
Finally, since dimensional space of functions all the norms are equivalent
andB tends uniformly to a constant field of magnitullg in
2¢'(B?)B-[VX(aB)]=2¢"(B?)aB-(VXB) B>B,, or perhaps this region tends to disappear. Anyway,
2 we see that the magnetic field cannot excBgdn the long
=2¢'(B%)aB-J, run.
We also see that the largévB|, the faster the conver-
wherelJ is the plasma current, we are left with gence. Let us see now how the gradient at the very &lge
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=B, affects this convergence rate by analyzipg Sinced,
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since¢” depends only oB2. The second derivative @, in

and ¢, are bounded functions, by approximating this func-the sense of distributions is the Dirac measﬁgg. Assum-
tion uniformly with smooth ones, it is straightforward to seejng B, is one of the(almost al) levels whereB=B, is a

that the terms

Jd
Eﬁfﬁz(Bz)dV,

[IRZGEIERY,

correspond, respectively, to

d
— B2—B2dV
Jt)e>B, 0

f VB2V,
B>B,

However, the term

IRCGRIGERY
Q

smooth surface, the limit, when approximatisg by smooth
functions, of Eq.(8) is

f IVB2do,
B=Bg

and therefore Eq6) becomes

d

— Bz—Bngs—nf |VB?|do
Jt)e>g,

B=Byg
+f |VB|2dV). (10
B>By
The same conclusion as before may be reached now, but in

addition we observe that the gradientB# must be small at
every level surfacésince we may apply the previous argu-

needs a separate study. Let us recall that for any smooth reglent to anyB,>B,) or the convergence is faster. Thus, the

functionv defined in(), the level setsS.:v=c are smooth
surfaces for almost every real and for any continuou&

JG|VU|dV=f va G do, (8)
Q —w Js,

wheredo denotes the surface area elemésee e.g. Ref.
[8]). Notice also that for a particular the setS, may not be
a surface at all, and even to fill an open subse®pbut this
only happens for a measure zero setvd$. Now, B is

smooth as it lies in a space of smooth functigtie large-
scale ones By takingv =B?, G= ¢" for a smooth¢ in Eq.

(8),

J¢>”(Bz)|VBZ|2dV=qub”(Bz)dej IVB2|de,
0 0 Sg2
9

sharpest the gradient 8° at B=B,, the quickesB tends to
flatten or the region to disappear.

IIl. CONCLUSIONS

We have analyzed the effect upon the magnetic field of
the existence of a threshoR}, beyond which the alpha term
of mean-field magnetohydrodynamics becomes irrelevant. If
we exclude the action of the mean velocity, we have shown
that the region where the field size exceeds this threshold
shrinks in volume and the field tends to become constant at
the levelB=B,. The process is faster if originally there are
large gradients of field &> B, or gradients of field size at
B=B,. As a consequence, a rapid cutoff of the alpha factor
will imply a smaller uniform bound upon the size of the
magnetic field.
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