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Effect of a quenching on magnetic field size

Manuel Núñez
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~Received 12 December 2000; published 17 April 2001!

It is commonly assumed that thea effect of mean-field magnetohydrodynamics essentially stops acting
wherever the mean-field size reaches a certain value. We show that if the mean velocity is approximately
constant, the regions where the field reaches such a threshold tend to shrink in size or the field tends to become
constant there. The rate of this process is also estimated.
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I. INTRODUCTION

Under the magnetohydrodynamic approximation,
magnetic fieldB in a plasma of velocityu and resistivityh
satisfies the induction equation

]B

]t
5hDB1“3~u3B!. ~1!

This equation, although linear inB, becomes useless fo
computational purposes if the velocityu is turbulent. How-
ever, the presence of large-scale features of the magn
field has been observed even in this situation. Appare
there is an inverse cascade from small to large scales fo
field. While several modelizations seem to indicate that t
cascade proceeds in a classical way, transferring gradu
magnetic energy to ever larger scales~see e.g., Ref.@1#!,
other authors rather think that there is direct production
large-scale fields from small-scale ones@2#. This, however,
will not affect our analysis. The correct procedure to stu
this phenomenon should be integration of the full magne
hydrodynamics~MHD! system. Unfortunately, this is com
putationally difficult and analytically almost impossible e
cept in simple cases. Under certain hypotheses, howev
simpler model has been proposed involving only the lar
scale components of the magnetic field and the velocity~also
denoted byB andu!. They are supposed to satisfy the equ
tion

]B

]t
5“3@2~h1b!“3B1u3B1aB#. ~2!

whereb is a turbulent diffusivity anda is the factor repre-
senting the enhancement of the magnetic field by small-s
turbulent velocity.a is a scalar only in the case of isotrop
turbulence. As a matter of fact there should be some kind
projection of the right-hand side term into some space
large-scale fields to make Eq.~2! a closed equation. For pe
riodic problems, this space may be identified with the se
functions whose Fourier modes do not exceed a cer
value; in other cases the relevant space is left rather lo
The space generated by the first few eigenfunctions of
Laplacian with the right boundary conditions is a good ca
didate.

There exists a classical derivation of Eq.~2!, the so-called
equation of mean-field magnetohydrodynamics, for sm
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fields ~see e.g. Ref.@3#!. Although many researchers find
convincing, let us just say that it is not rigorous@4,5#. It is
probably safer to view Eq.~2! as a semiempirical formula
which has proved indeed very successful for modelization
many astrophysical phenomena~see e.g. Ref.@2# and refer-
ences therein!. Nothing but qualitative predictions should b
expected from it, however.

Although, as asserted, the regular procedure should b
solve the MHD system, by considering the effect upon
velocity of the Lorentz force, this is so costly that it is natur
to try to extend Eq.~2! beyond its original range of wea
fields. However, it is known that large fields will tend t
suppress turbulence and therefore botha and b should de-
crease with field size. The precise dependence, being to s
extent a matter of convenience to meet experimental dat
more polemic. The standard one fora is

a5
f

11kB2
, ~3!

for some bounded functionf and positive constantk. For
axisymmetric systems, where Eq.~2! is most often applied,f
is usually taken as a multiple of cosu, whereu is the latitude
coordinate. There is some controversy on the size ofk. It has
been argued@6,7# thatk could be of the order of 1/h, a large
amount because the resistivity of astrophysical plasma
usually very low. If so, the threshold beyond which thea
term is insignificant, could occur quite soon.

Our purpose is to study the effect of this threshold up
the magnetic field size. Since we will try to isolate the co
tribution of a, we will take the mean velocity as constant,
that it may be eliminated by a Galilean transformation. Al
for simplicity purposes we will take the resistivity as co
stant, ignoring the turbulent contribution, since any ad
tional resistivity will only tend to smooth the field, our re
sults will remain valid~and even stronger! in the general
case. We will make no hypotheses upon the specific form
the functiona, only we assume that beyond a certain val
B0 of the field, it is small enough to be safely ignored. Und
these conditions, we will prove that eventually the field w
not exceedB0. Moreover, if some region originally exceed
this value, it will tend to form a plateau of constant field
the region itself shrinks in volume, and the sharper the or
nal field gradients are, the more rapid is this process. Le
note that these results do not follow in any obvious way fro
©2001 The American Physical Society04-1
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Eq. ~2!: although the equation is dissipative fora50, there
could exist regions in the plasma whereB,B0 and therefore
a is positive; these regions may vary in time, and their
fects upon the whole domain must be dealt with.

These results could conceivably throw light upon the p
viously mentioned controversy upon the size ofk, since for
largerk, the cutoffB0 is smaller. In the case of early alph
quenching, therefore, not only the magnetic energy will te
to be small in time, but the size of the field itself is uniform
bounded by a small constant for large times.

II. THE MAIN ESTIMATES

Let f:@0,̀ !→@0,̀ ! be a positive, increasing and twic
differentiable function. Since we assume that the threshol
a depends only onB2, we will consider the functionf(B2).
By elementary operations,

]

]t
~f+B2!52f8~B2!B•

]B

]t
,

D~f+B2!52f8~B2!u“Bu21f9~B2!u“B2u2

12f8~B2!B•DB.

Since we assume that the mean velocity is zero, the func
f+B2 satisfies the equation

]

]t
~f+B2!5hD~f+B2!2hf9~B2!u“B2u2

22hf8~B2!u“Bu212f8~B2!B•@“3~aB!#.

~4!

Let us integrate all the terms in the domainV under consid-
eration, which we assume smooth enough. Obviously

E
V

D~f+B2!dV5E
]V

]~f+B2!

]n
ds.

This boundary integral vanishes with periodic, Dirichlet,
Neumann homogeneous conditions, or in the absence
boundary. More generally, it is negative as long asf+B2

decreases towards the boundary ofV. Thus, for instance,
sincef8>0, if ]B2/]n<0, the integral is negative. This of
ten happens in real situations: one chooses the domai
that the magnetic field is concentrated there and it decre
in size towards]V. From now on we will assume that thi
integral is not positive.

Finally, since

2f8~B2!B•@“3~aB!#52f8~B2!aB•~“3B!

52f8~B2!aB•J,

whereJ is the plasma current, we are left with
05640
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]tEV
f~B2!dV<2hS E

V
f9~B2!u“B2u2

12f8~B2!u“Bu2 dVD
12E

V
f8~B2!aB•J dV. ~5!

Notice that since all the functions are large scale, the cur
cannot be too large ifB is not, so that the contribution o
small regions ofV to the last term of Eq.~5! is equally small.
Thus, if B0 is the threshold beyond whicha is small enough
to be discounted andf8(B2) vanishes forB in @0,B0#, the
last integral may be considered as zero. For such funct
f,

]

]tEV
f~B2!dV<2hS E

V
f9~B2!u“B2u2

12f8~B2!u“Bu2dVD , ~6!

which is the main bound. It tells us that, providedf8,f9>0,
the integral off(B2) decreases in time.

Every election off provides some insight on the behavi
of B at the subdomainB.B0. We will consider only the
following examples:

f1~x!5B0
2 ,xP@0,B0#; f1~x!5x2,x.B0 ,

f2~x!5B0 ,xP@0,B0#; f1~x!5x,x.B0 .

In fact the functionf2 is not twice differentiable at the poin
B0, but by approximating it with smooth functions we wi
see that the integrals converge to appropriate limits. Now
inequality ~6! becomes forf1

]

]tEB.B0

B42B0
4dV<2hS E

B.B0

2u“B2u212B2u“Bu2dVD
<24hB0

2E
B.B0

u“Bu2dV. ~7!

Hence the integral ofB42B0
4 decreases and is positive

Therefore it must tend to a constant and its time derivative
zero. For this to happen,*B.B0

u“Bu2dV must tend to zero.

This seems to indicate thatB must tend to a constant atB
.B0, since the value ofB at the boundary of this region i
B0, this constant value has sizeB0. Actually this argument, if
made in a more general case, would need some fine poin
functional analysis, but since we are working within a finit
dimensional space of functions all the norms are equiva
andB tends uniformly to a constant field of magnitudeB0 in
B.B0, or perhaps this region tends to disappear. Anyw
we see that the magnetic field cannot exceedB0 in the long
run.

We also see that the largeru“Bu, the faster the conver
gence. Let us see now how the gradient at the very edgB
4-2
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5B0 affects this convergence rate by analyzingf2. Sincef2

and f28 are bounded functions, by approximating this fun
tion uniformly with smooth ones, it is straightforward to s
that the terms

]

]tEV
f2~B2!dV,

E
V

f28~B2!u¹Bu2dV

correspond, respectively, to

]

]tEB.B0

B22B0
2dV

E
B.B0

u“Bu2dV.

However, the term

E
V

f29~B2!u“B2u2dV

needs a separate study. Let us recall that for any smooth
function v defined inV, the level setsSc :v5c are smooth
surfaces for almost every realc, and for any continuousG

E
V

Gu“vudV5E
2`

`

dvE
Sv

G ds, ~8!

where ds denotes the surface area element~see e.g. Ref.
@8#!. Notice also that for a particularv the setSv may not be
a surface at all, and even to fill an open subset ofV, but this
only happens for a measure zero set ofv ’s. Now, B is
smooth as it lies in a space of smooth functions~the large-
scale ones!. By takingv5B2, G5f9 for a smoothf in Eq.
~8!,

E
V

f9~B2!u“B2u2dV5E
0

`

f9~B2!dB2E
SB2

u“B2uds,

~9!
-

,

05640
-

eal

sincef9 depends only onB2. The second derivative off2 in
the sense of distributions is the Dirac measuredB

0
2. Assum-

ing B0 is one of the~almost all! levels whereB5B0 is a
smooth surface, the limit, when approximatingf2 by smooth
functions, of Eq.~8! is

E
B5B0

u“B2uds,

and therefore Eq.~6! becomes

]

]tEB.B0

B22B0
2dV<2hS E

B5B0

u“B2uds

1E
B.B0

u“Bu2dVD . ~10!

The same conclusion as before may be reached now, b
addition we observe that the gradient ofB2 must be small at
every level surface~since we may apply the previous arg
ment to anyB1.B0) or the convergence is faster. Thus, t
sharpest the gradient ofB2 at B5B0, the quickestB tends to
flatten or the region to disappear.

III. CONCLUSIONS

We have analyzed the effect upon the magnetic field
the existence of a thresholdB0 beyond which the alpha term
of mean-field magnetohydrodynamics becomes irrelevan
we exclude the action of the mean velocity, we have sho
that the region where the field size exceeds this thresh
shrinks in volume and the field tends to become constan
the levelB5B0. The process is faster if originally there a
large gradients of field atB.B0, or gradients of field size a
B5B0. As a consequence, a rapid cutoff of the alpha fac
will imply a smaller uniform bound upon the size of th
magnetic field.
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